Measurement of Thin Film Characteristics In Porous Media

Emily Thornley

Department of Chemical, Biological and Environmental Engineering Oregon State University SBI Internship, Summer 2007

Introduction

 At low saturations water moves in thin films around objects rather than by capillary action

- Liquid film formation in unsaturated porous media is not commonly included in subsurface flow and transport models
- Thin films provide greater areas of air/water interfaces at which a large variety of microbes flourish

The Project

 Construct a virtually 2-D flow cell using Yucca Mountain tuff grains cut to 0.5 millimeter thickness

 The flow cell must incorporate a relative humidity and temperature sensor while remaining a closed system

The Project

 The flow cell is wetted and dried while being digitally imaged.

 Saturation levels from images are combined with relative humidity and temperature data to create a model for conditions at which film flow occurs

 First, I found a digital sensor small and accurate enough to work in such a small space

The RH sensor was calibrated using an analog RH sensor

 Readings from the two sensors were repeatable and closely correlated

 Next, I constructed flow cells using glass slides and epoxy. These incorporated a housing for the RH sensor.

 Glass inside of the cells were treated to be made hydrophobic.

Experiments

 A few versions of the flow cell have been created due to leakage and other issues

Experiments

 Tests were done using different flow cells and a digital microscope while monitoring relative humidity and temperature.

Results

Images capturing thin film flow have been obtained

Dry Grain Surface

Wetted Grain Surface

Results

Progress has been made in image optimization

Results

- Further experimentation is being done to optimize flow cells
- Possibilities for use of a polymer called Polydimethyl Siloxane (PDMS) in flow cell construction instead of glass are being explored
- Once these problems have been corrected, the data can be used to model thin film flow

Conclusions

 Further experimentation is needed to optimize imaging and flow cell construction techniques

 Once a thin film flow model is achieved, the aspect of this project may be applied to include microbial growth and transport models

Acknowledgements

 Dorthe Wildenschild, Danielle Jansik, Andy Brickman, Brian Wood, Adam Kent, Naoyuki Ochai